

Journal of Organometallic Chemistry 556 (1998) 165-167

New cyclic stannyloligosilanes

C. Kayser, R. Klassen, M. Schürmann, F. Uhlig *

Anorganische Chemie II, Universität Dortmund, Otto-Hahn-Straße 6, D-44221, Dortmund, Germany

Received 2 October 1997; received in revised form 17 November 1997

Abstract

The synthesis of new cyclic stannyloligosilanes $[R_2Sn(SiMe_2)_n]$ (2a, n = 5, R = Ph; 2b, n = 5, R = Me; 3a, n = 6, R = Ph; 3b, n = 6, R = Me) is reported. The compounds are fully characterised by mass spectrometry and NMR spectroscopy and in the case of 2a also by X-ray analysis. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Cyclic stannylsilanes; ²⁹Si-, ¹¹⁹Sn-NMR spectroscopy; Crystal structure

1. Introduction

Cyclic silanes are well known as reagents in organometallic chemistry and material science [1]. However, to the best of our knowledge, only one cyclic organostannylsilane, i.e. decaphenylcyclostannatetrasilane 1, is known [2].

In a previous paper, we reported an Si–Sn-coupling reaction from triorganochlorostannanes with mono-fluorosilanes and magnesium [3]. Here we describe first results on reactions of α, ω -difluorosilanes with diorgan-odichlorostannanes and magnesium to form the cyclic monostannylsilanes **2a**, **2b**, **3a**, **3b** in moderate yields (Scheme 1).

The 1,2,3,4,5-pentasila-6-stanna-cyclohexanes **2a**, **b** and the 1,2,3,4,5,6-hexasila-7-stanna-cycloheptanes **3a**,

b are colourless, crystalline compounds. They are stable on air for hours and soluble in common organic solvents such as acetone, *n*-alkanes and ethers. The ²⁹Siand ¹¹⁹Sn-NMR data are given in Table 1. The molecular structure of **2a** is shown in Fig. 1.

Crystal data and structure solution of **2a**: $C_{22}H_{40}Si_5Sn$, M = 563.68, orthorhombic, *Pbca*, a = 14.853(1), b = 13.686(1), c = 30.555(1) Å, V = 6211.2(6)

Scheme 1. Synthesis of cyclic stannyloligosilanes 2 and 3.

^{*} Corresponding author. Fax: +49 231 7553797.

⁰⁰²²⁻³²⁸X/98/\$19.00 © 1998 Elsevier Science S.A. All rights reserved. *PII* S0022-328X(97)00755-9

	¹¹⁹ Si-NMR	Si _a	${}^{1}J_{ m Si-119/117Sn}$	²⁹ Sn-NMR Si _b	${}^{2}J_{ m Si-119/117Sn}$	Si _c	³ J _{Si-119/117Sn}	
2a ^a	-223.05	-34.9	368/350	- 38.4	99/94	-41.5	24	
2b	-242.6	-38.8	387/370	- 39.2	93/88	-42.1	b	
3a	-224.1	-34.4	370/354	-38.7	94/90	-41.4	30	
3b°	-243.6	-38.5	390/373	- 39.1	92/88	-41.5	b	

¹¹⁹Sn- and ²⁹Si-NMR data for 2a, b and 3a, b (δ [ppm] and ^xJ_{Si-119/117Sn} [Hz])

^{a 1} $J(Si_a-Si_b)$ 61.3 Hz; ² $J(Si_a-Si_c)$ 9.8 Hz; ¹ $J(Si_b-Si_c)$ 62.5 Hz.

^b Not found.

 $^{c 1}J(Si_a - Si_b)$ 60.3 Hz; $^{2}J(Si_a - Si_c)$ 9.2 Hz; $^{1}J(Si_b - Si_c)$ 61.6 Hz; $^{2}J(Si_b - Si_c)$ 8.9 H.

Å³, Z = 8, $D_{\text{calc.}} = 1.206$ g cm⁻³; (Mo-K_a) = 0.71069 Å, F(000) = 2336, T = 291(1) K. The data were collected to a maximum θ of 20.84° with 360 frames via ω -rotation ($\Delta/\omega = 1^{\circ}$) two times 10 s per frame on a NONIUS KappaCCD diffractometer. The structure was solved by direct methods SIR92 [6] and refined by full-matrix least squares calculations using all measured F^2 data and SHELXL93 [7]. All non-H atoms were refined anisotropically. The H atoms were placed in geometrically calculated positions and refined with common isotropic temperature factors (C-H_{arvl} 0.93 Å, U_{iso} 0.135(7) Å³; C-H_{alkyl} 0.96 Å, U_{iso} 0.154(4) Å³). $R_1 = 0.0245$ for 1964 [I > 2 (I)] and $wR_2 = 0.0564$ for 3206 independent reflections. The maximum and minimum residual electron densities were 0.334 and -0.167e Å⁻³. Full details have been deposited with the Cambridge Crystallographic Data Centre and are also available in CIF format from the author.

Preliminary investigations show that 1,3-difluorohexamethyltrisilane and 1,4-difluoro-octamethyltetrasilane, respectively, react with R_2SnCl_2 under formation of cyclic stannylsilanes with more than one tin atom.

2. Experimental

All syntheses were carried out using Schlenk-techniques to exclude oxygen and moisture. Solvents were dried by known methods. α, ω -difluorooligosilanes were obtained from dichloro- or dibromooligosilanes [4] and [Bu₄N][Ph₃SnF₂] [3,5].

2.1. General procedure

In a typical reaction one equivalent α, ω -difluorooligosilane, one equivalent R₂SnCl₂ and three equivalents Mg (50% excess) are stirred in THF at room temperature. After a few hours the mixture turns to green-black indicating the start of the reaction. Stirring is continued for 5–8 days. After removing the solvent in vacuo, the residue is extracted with *n*-hexane or CH₂Cl₂. The solvents are removed in vacuo. The

crude product is purified by recrystallisation or Kugelrohr distillation.

2.1.1. 6,6-diphenyl-decamethyl-1,2,3,4,5-pentasila-6stanna-cyclohexane **2a**

Starting materials: 2.09 g (6 mmol) $F-(SiMe_2)_5-F$, 2.17 g (6 mmol) Ph_2SnCl_2 . For **2a** the residue is extracted with hexane. The crude product is purified by recrystallisation with acetone to afford the product in a yield of 1.35 g (40%). m.p. 180–182°C.

MS(EI): m/e 564 [M⁺], 487 [PhSn(SiMe₂)₅⁺], 429 [PhSn(SiMe₂)₄⁺], 414 [PhSn(SiMe₂)₃SiMe⁺], 352 [Sn (SiMe₂)₄⁺], 294 [Sn(SiMe₂)₃⁺]. ¹H-NMR [ppm]: 7.15 (m, 10H, 2 × Ph); 0.31 (s, 12H, Si_aMe); ³J_{Sn-H} = 33.2/31.9 Hz; 0.07 (s, 18H, Si_bMe, Si_cMe). Found: C 46.85, H 7.14. C₂₂H₄₀Si₅Sn. Calc.: C 47.3, H 7.8.

Fig. 1. General view of a molecule of (1) showing 30% probability displacement ellipsoids and atom numbering (SHELXTL-PLUS) [8]. Important parameters: Sn-Si(1) 2.5670(13), Sn-Si(5) 2.5701(13), Sn-C(21) 2.136(5), Sn-C(11) 2.156(4), Si(1)-Sn-Si(5) 108.45(13), Si(5)-Sn-C(21) 112.5(2), Si(1)-Sn-C(21) 110.9(2).

Table 1

2.1.2. Dodecamethyl-1,2,3,4,5-pentasila-6-stannacyclohexane **2b**

Starting materials: 1.96 g (5.95 mmol) $F-(SiMe_2)_5-F$, 1.13 g (5.95 mmol) Me_2SnCl_2 . For **2b** the residue is extracted with hexane. The crude product is purified by recrystallisation with ether to afford the product in a yield of 1.17 g (45%). m.p. 120–123°C.

MS(EI): m/e 439 [M⁺], 424 [MeSn(SiMe₂)₅⁺], 367 [MeSn(SiMe₂)₄⁺], 352 [Sn(SiMe₂)₄⁺], 294 [Sn(SiMe₂)₃⁺]. ¹H-NMR [ppm]: 0.28 (s, 12H, Si_aMe); ³J_{Sn-H} = 34/32.4 Hz; 0.15 (s, 6H, SnMe); 0.06 (s, 18H, Si_bMe, Si_cMe). Found: C 32.29, H 8.26. C₁₂H₃₆Si₅Sn. Calc.: C 33.1, H 8.42.

2.1.3. 7,7-diphenyl-dodecamethyl-1,2,3,4,5,6-hexasila-7-stanna-cycloheptane **3a**

Starting materials: 4.7 g (12.1 mmol) $F-(SiMe_2)_6-F$, 4.16 g (12.1 mmol) Ph_2SnCl_2 .

For **3a** the residue is extracted with hexane. The crude product is purified by recrystalisation in *n*-hexane. Yield 2.41 g (32%). m.p. 131-133°C.

MS(EI): m/z 622 [M⁺], 564 [Ph₂Sn(SiMe₂)₅⁺], 549 [Ph₂Sn(Si₅Me₉)⁺], 491 [Ph₂SnSi₄Me₇⁺], 428 [PhSn(-SiMe₂)₄⁺], 352 [SnSi₄Me₈⁺], 348 [(SiMe₂)₆⁺], 309 [SnSi₃Me₇], 73 [SiMe₃⁺]. ¹H-NMR [ppm]: 7.29 (m, 10H, 2xPh); 0.36 (s, 12H, Si_aMe); ³J_{Sn-H} = 32.5/30.9 Hz; 0.08 (s, 12H, Si_bMe); -0.13 (s, 12H, Si_cMe). Found: C 46.34, H 7.45. C₂₄H₄₆Si₆Sn. Calc.: C 45.6, H 7.7.

2.1.4. Tetradecamethyl-1,2,3,4,5,6-hexasila-7-stannacycloheptane **3b**

Following the general procedure 3.32 g (8.57 mmol) $F-(SiMe_2)_6-F$, 1.88 g (8.57 mmol) Me_2SnCl₂ and 0.62 g (25.7 mmol) Mg (50% excess) are stirred in 150 ml THF at room temperature for 7 days. The residue is purified by Kugelrohr distillation. We received 0.64 g (15% yield) of a colourless solid **3b** with m.p. 92–98°C. MS(EI): m/z 498 [M⁺], 483 [MeSn(SiMe₂)₆⁺], 425 [MeSn(SiMe₂)₅⁺], 367 [MeSn(SiMe₂)₄⁺], 348 [(SiMe₂)₆⁺], 335 [SnSi₄Me₇⁺], 290 [(SiMe₂)₅⁺], 232 [(SiMe₂)₄⁺], 131 [Me₃Si₂Me₂⁺], 73 [Me₃Si⁺]. ¹H-NMR [ppm]: 0.23 (s, 12H, Si_aMe); ³J_{Sn-H} = 35/33.3 Hz; 0.12 (s, 6H, SnMe); - 0.07 (s, 24H, Si_bMe, Si_cMe). Found: C 33.76, H 8.50. C₁₄H₄₂Si₆Sn. Calc.: C 33.15, H 8.2.

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for financial support (DFG-project Uh74-3) and the ASV-innovative Chemie GmbH (Bitterfeld) for the generous gift of silanes. We are also grateful to Professor Dr. K. Jurkschat (Universität Dortmund/Germany) for supporting this investigation.

References

- (a) E. Hengge, R. Janoschek, Chem. Rev. 95 (1995) 1443. (b) R. West, in S. Patai, Z. Rappaport (Eds.), The Chemistry of Organic Silicon Compounds, Wiley Interscience, NY, Ch. 19, 1989. (c) P. Kochs, in: H.R. Kricheldorf (Ed.), Silicon in polymer synthesis, Springer, Berlin, Heidelberg, Ch. 4, 1996.
- [2] E. Hengge, U. Brychy, M. Chem. 95 (1966) 1309.
- [3] R. Hummeltenberg, K. Jurkschat, F. Uhlig, Phosphorus, Sulfur and Silicon (1997) in press.
- [4] H. Gilman, R.L. Harell, J. Organomet. Chem. 14 (1966) 317.
- [5] M. Gingras, Tetrahedron Lett. 132 (50) (1991) 7381-7384.
- [6] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori, M. Camalli, SIR92—a program for automatic solution of crystal structures by direc methods, J. Appl. Crystallogr. 27 (1994) 435.
- [7] G.M. Sheldrick, SHELXL93, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.
- [8] G.M. Sheldrick, SHELXTL-PLUS. Release 3.4 for Nicolet R3m/V crystallographic system. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Nicolet Instrument Corporation, Madison, Wisconsin, USA, 1987.